LESSON 2:
Solving Quadratic Equations by
Extracting Square Roots

Finding the root of a quadratic equation can be done by extracting the square root of the form \(ax^2 \pm c = 0 \).

Square Root Property

If \(x^2 = a \), and \(a \) is an integer, then \(x = \pm \sqrt{a} \)

It is important to remember that we can only use this property if the numerical coefficient of the variable \(x \) is 1.

Example 1: Solve for the roots of the following quadratic equations by extracting the root.

(a) \(x^2 = 36 \)
(b) \(w^2 - 49 = 0 \)
(c) \(y^2 - 5 = 0 \)

(d) \(t^2 = 50 \)
(e) \(r^2 + 100 = 0 \)
(f) \((x - 9)^2 = 64 \)

Solution:

(a) \(x^2 = 36 \)
\(x = \pm 6 \)

(b) \(w^2 - 9 = 0 \)
\(w^2 = 9 \)
\(w = \pm 3 \)

(c) \(y^2 - 5 = 0 \)
\(y^2 = 5 \)
\(y = \pm \sqrt{5} \)

(d) \(t^2 = 50 \)
\(t = \pm \sqrt{50} \)
\(t = \pm 5\sqrt{2} \)

(e) \(r^2 + 100 = 0 \)
\(r^2 = -100 \)
\(r = \pm 10i \)

(f) \((x - 9)^2 = 64 \)
\(x - 9 = \pm \sqrt{64} \)
\(x - 9 = \pm 8 \)
\(x = 9 \pm 8 \)
\(x_1 = 9 + 8 = 17 \)
\(x_2 = 9 - 8 = 1 \)
A. Solve for the roots of the following quadratic equations by extracting the roots.

1. \(x^2 = 121 \)
2. \(4x^2 - 3 = 9 \)
3. \(5x^2 - 100 = 0 \)
4. \(4x^2 - 100 = 0 \)
5. \(m^2 + 12 = 48 \)

B. Use the square root property to solve for the roots of the following quadratic equations.

1. \((x + 4)^2 = 36 \)
2. \((x + 1)^2 = 14 \)
3. \(4(x - 5)^2 = 20 \)
4. \(3(x - 3)^2 = 27 \)
5. \(2(3x + 1)^2 - 8 = 0 \)

Worksheet Link:
http://www.kutasoftware.com/FreeWorksheets/Alg1Worksheets/Solving%20Quadratic%20Roots.pdf